谁知道兔子数列是什么东西?

问题描述:

谁知道兔子数列是什么东西?

【兔子数列】
  
即斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(LeonardoFibonacci,生于公元1170年,卒于1240年.籍贯大概是比萨).他被人称作“比萨的列昂纳多”.
  斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,13,21……
这个数列从第三项开始,每一项都等于前两项之和.它的通项公式为:
(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
  很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的.
【该数列有很多奇妙的属性】
  比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……
  还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1.
  如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到.
  如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值.
  斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数.
【斐波那契数列别名】
  斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.
  斐波那契数列
  一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来.如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
  我们不妨拿新出生的一对小兔子分析一下:
  第一个月小兔子没有繁殖能力,所以还是一对;
  两个月后,生下一对小兔民数共有两对;
  三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
  ------
  依次类推可以列出下表:
  经过月数:0 1 2 34 5 6 7 8 9 10 11 12
  兔子对数:1 1 2 35 8 13 21 34 55 89 144 233
  表中数字0,1,1,2,3,5,8---构成了一个数列.这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项.
  这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2)n-(1-√5/2) n](n=1,2,3.)
【斐波那挈数列通项公式的推导】
  斐波那契数列:0,1,1,2,3,5,8,13,21……
  如果设F(n)为该数列的第n项(n∈N+).那么这句话可以写成如下形式:
  F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3)
  显然这是一个线性递推数列.
  通项公式的推导方法一:利用特征方程
  线性递推数列的特征方程为:
  X^2=X+1
  解得
  X1=(1+√5)/2,X2=(1-√5)/2.
  则F(n)=C1*X1^n +C2*X2^n
  ∵F(1)=F(2)=1
  ∴C1*X1 + C2*X2
  C1*X1^2 + C2*X2^2
  解得C1=1/√5,C2=-1/√5
  ∴F(n)=(1/√5)*{[(1+√5)/2]^n -[(1-√5)/2]^n}【√5表示根号5】
  通项公式的推导方法二:普通方法
  设常数r,s
  使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
  则r+s=1, -rs=1
  n≥3时,有
  F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
  F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
  F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
  ……
  F(3)-r*F(2)=s*[F(2)-r*F(1)]
  将以上n-2个式子相乘,得:
  F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
  ∵s=1-r,F(1)=F(2)=1
  上式可化简得:
  F(n)=s^(n-1)+r*F(n-1)
  那么:
  F(n)=s^(n-1)+r*F(n-1)
  = s^(n-1) +r*s^(n-2) + r^2*F(n-2)
  = s^(n-1) +r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
  ……
  = s^(n-1) +r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
  = s^(n-1) +r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
  (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
  =[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
  =(s^n - r^n)/(s-r)
  r+s=1, -rs=1的一解为s=(1+√5)/2, r=(1-√5)/2
  则F(n)=(1/√5)*{[(1+√5)/2]^n- [(1-√5)/2]^n}
  
  斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:
  1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1
  2.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)-1
  3.f(0)+f(2)+f(4)+…+f(2n)=f(2n+1)-1
  4.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)
  5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1
  6.f(m+n)=f(m-1)·f(n-1)+f(m)·f(n)
  7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)
  8.f(2n-1)=[f(n)]^2-[f(n-2)]^2
  在杨辉三角中隐藏着斐波那契数列
  1
  1 1
  1 2 1
  1 3 3 1
  1 4 6 4 1
  ……
  过第一行的“1”向左下方做45度斜线,之后做直线的平行线,将每条直线所过的数加起来,即得一数列1、1、2、3、5、8……
  
(1)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花.
  (2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊.
  斐波那契数经常与花瓣的数目相结合:
  3………………………百合和蝴蝶花
  5………………………蓝花耧斗菜、金凤花、飞燕草
  8………………………翠雀花
  13………………………金盏草
  21………………………紫宛
34,55,84……………雏菊、
(3)斐波那契数还可以在植物的叶、枝、茎等排列中发现.
例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数.叶子从一个位置到达下一个正对的位置称为一个循回.叶子在一个循回中旋转的圈数也是斐波那契数.在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比.多数的叶序比呈现为斐波那契数的比.
  (4)斐波那契数列与黄金比值
  相继的斐波那契数的比的数列:
  它们交错地或大于或小于黄金比的值.该数列的极限为.这种联系暗示了无论(尤其在自然现象中)在哪里出现黄金比、黄金矩形或等角螺线,那里也就会出现斐波那契数,反之亦然.
  可它的每一项却都是整数.而且这个数列中相邻两项的比值,越靠后其值越接近0.618.这个数列有广泛的应用,如树的年分枝数目就遵循斐波那契数列的规律;而且计算机科学的发展,为斐波那契数列提供了新的应用场所.