函数f(x)=|sinπx-cosπx|对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x2-x1|的最小值为
问题描述:
函数f(x)=|sinπx-cosπx|对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x2-x1|的最小值为
答
f(x)=√2|sin(πx-π/4)|
所以,0≤f(x)≤√2
f(x)的最小正周期=(2π/π)/2=1
任意x∈R都有f(x1)≤f(x)≤f(x2)成立
则,|x2-x1|的最小值=最小正周期的一半=1/2