lim(1+x)(1+x^2)…[1+x^(2^n)],|x|

问题描述:

lim(1+x)(1+x^2)…[1+x^(2^n)],|x|

lim(1+x)(1+x^2)…[1+x^(2^n)]
=lim(1-x)(1+x)(1+x^2)…[1+x^(2^n)]/(1-x)
=lim(1-x^2)(1+x^2)…[1+x^(2^n)]/(1-x)
.逐项乘下去得:
=lim[1-x^(2^n+1)]/(1-x)
因为|x|所以原式=lim1/(1-x),这里应该是n→∞,而不是x→∞
答案就是1/(1-x)