计算:1−1/2+1/3−1/4+…+1/1997−1/1998+1/19991/1+1999+1/2+2000+1/3+2001+…+1/999+2997+1/1000+2998.

问题描述:

计算:

1−
1
2
+
1
3
1
4
+…+
1
1997
1
1998
+
1
1999
1
1+1999
+
1
2+2000
+
1
3+2001
+…+
1
999+2997
+
1
1000+2998

分子=(1+

1
2
+
1
3
+
1
4
+…+
1
1997
+
1
1998
+
1
1999
)−2×(
1
2
+
1
4
+
1
6
+…+
1
1998
),
=(1+
1
2
+
1
3
+…+
1
1999
)−(1+
1
2
+
1
3
+…+
1
999
)

=
1
1000
+
1
1001
+…+
1
1999

分母=
1
2000
+
1
2002
+
1
2004
+…+
1
3996
+
1
3998

=2×(
1
1000
+
1
1001
+…+
1
1999
)

原式=
1
1000
+
1
1001
+…+
1
1999
2×(
1
1000
+
1
1001
+…+
1
1999
)
1
2