已知两个不共线的向量a,b的夹角为c,且|a|=3,|b|=1.若a+2b与a-4b垂直,求tanc

问题描述:

已知两个不共线的向量a,b的夹角为c,且|a|=3,|b|=1.若a+2b与a-4b垂直,求tanc

a+2b与a-4b垂直 所以 这两个向量的积为0 即 (a+2b) *(a-4b)=0
得 a^2 - 2a*b - 8b^2=0
带入|a|=3,|b|=1,得9 - 2a*b -8=0
所以 a*b = 1/2
因为 a*b=|a|*|b|*cos c 所以,cos c=1/6 tan c= 根号35