高斯消元法的疑问 关于将增广矩阵转换成三角矩阵

问题描述:

高斯消元法的疑问 关于将增广矩阵转换成三角矩阵
由下到上操作每一行时
都要确保所有的a[i][i]>0
这个要怎么处理?
如果方程有解,必然每一列都有一个元素大于0.
所以只要利用初等行变换就可以了.
但是这个要怎么确保一定换到位了?
如果只是单向扫描比如从上往下,很有可能
下面必须和上面的交换才能有解.
比如如下矩阵
1 1 1 1
1 0 1 1
0 0 1 1
1 0 0 1
显然如果只是单向扫描
第一行就不会换.
然后扫描到第二行是就判定为无解.
但是完全可以把第2行先和第1行交换.
然后扫描
就完全没问题了.
那么应该用一个怎样的方式来时得任意的a[i][i]>0呢?

看来你不知道有所谓的“选主元”,你应该去学一下列选主元Gauss消去法.
对于非奇异矩阵而言,只要通过选主元,一定可以保证Gauss消去法进行到底.
就你给的矩阵而言,即使不做行交换也没问题,因为消去的时候会产生“填充”,对角元正好变成非零了.