已知:abc=1,将下列分式进行通分a/ab+a+1,b/bc+b+1,c/ac+c+1的值.
问题描述:
已知:abc=1,将下列分式进行通分a/ab+a+1,b/bc+b+1,c/ac+c+1的值.
答
a/(ab+a+1)=a/(ab+a+1)b(/bc+b+1)=ab/(abc+ab+a)=ab/(ab+a+1) (上下同时乘以a)c/(ac+c+1)=bc/(abc+bc+b)=bc/(bc+b+1)=1/(ab+a+1) (上下同时乘以ba)∴a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)=(a+ab+1)/(ab+a+1)=1...通分,大哥!已知:abc=1,将下列分式进行通分a/ab+a+1,b/bc+b+1,c/ac+c+1通分,分母一样了,叫做通分,通好了a/(ab+a+1);b(/bc+b+1)=ab/(ab+a+1) ;c/(ac+c+1)=1/(ab+a+1)然后相加为1