已知α,β属于3π/4到π sin(α+β)=-3/5 sin(β—π/4)=12/13 求cos(α+π/4)=?

问题描述:

已知α,β属于3π/4到π sin(α+β)=-3/5 sin(β—π/4)=12/13 求cos(α+π/4)=?

精彩答案的第三行应该是
所以cos(β-π/4)=√(1-sin²(β-π/4))=-5/13

sin(β—π/4)=12/13 和(sinβ)^2+(cosβ)^2=1联立解出sinβ、cosβ。
sin(α+β)=-3/5和(sinα)^2+(cosα)^2=1联立解出sinα、cosα。
根据α,β的范围可求出cos(α+π/4)。
方法告诉你了答案你自己算吧,有问提的话可以再问我。

α,β∈ [3π/4,π]
那么 α+β∈[3π/2,2π] 那么 cos(α+β)>0 所以cos(α+β)=√(1-sin²(α+β))=4/5
β-π/4 ∈[π/2,3π/4], cos(β-π/4) 从而 cos(α+π/4)=cos[(α+β)-(β-π/4)]
=cos(α+β)cos(β-π/4)+sin(α+β)sin(β-π/4)
=4/5×(-5/13)+ (-3/5)×12/13
=-56/65