已知△ABC是半径为R的圆的内接三角形,且2R [(sinA)^2-(sinC)^2]=[(根号2 ×a )-b]sinB

问题描述:

已知△ABC是半径为R的圆的内接三角形,且2R [(sinA)^2-(sinC)^2]=[(根号2 ×a )-b]sinB
1.求角C
2.求△ABC面积S的最大值.
(不要什么两角正弦积化和的公式)

化简asina-csinc=(根号2*a-b)sinB.
a^2-c^2=根号2ab-b^2
所以a^2+b^2-c^2=根号2ab,
所以cosC=根号2ab/2ab=根号2/2.
所以C=45度
所以 S=(1/2)absinC=2R²sinAsinBsinC
=√2R²sinAsinB
根据两角正弦积化和的公式
S=√2R²sinAsinB=(√2R²/2)[cos(A-B)-cos(A+B)]
=(√2R²/2)[cos(A-B)+cosC]
=(√2R²/2)[cos(A-B)+√2/2]
≤(√2R²/2)[1+√2/2]=[(√2+1)R²]/2
所以当A=B的时候
三角形ABC的面积的最大值是[(√2+1)R²]/2