已知命题p:{x|-2≤x≤10},命题q:{x|1-m≤x≤1+m,m>0}.若¬p是¬q的必要不充分条件,求实数m的取值范围.

问题描述:

已知命题p:{x|-2≤x≤10},命题q:{x|1-m≤x≤1+m,m>0}.若¬p是¬q的必要不充分条件,求实数m的取值范围.

∵p:{x|-2≤x≤10},
∴¬p:{x|x<-2或x>10},设为集合A
又∵q:{x|1-m≤x≤1+m,m>0}.
∴¬q:{x|x<1-m或x>1+m},设为集合B
∵¬p是¬q的必要不充分条件,

∴集合B是集合A的真子集,利用数轴可得

1−m≤−2
1+m≥10
(两个等号不同时成立)
解之得:m≥9,即实数m的取值范围是[9,+∞)…8分.