已知点Q( 2,0)和圆O:x∧2+y∧2=1,动点M到圆O的切线长等于|MQ|,则动点M的轨迹方程是?
问题描述:
已知点Q( 2,0)和圆O:x∧2+y∧2=1,动点M到圆O的切线长等于|MQ|,则动点M的轨迹方程是?
答
设点M坐标为(x,y)圆C半径为1,圆心C坐标为(0,0)过点M作圆C的切线,切点为P则|MP|²=|MC|²-|CP|²=x²+y²-1显然,x²+y²≥1而|MQ|²=(x-2)²+y²∵|MP|/|MQ|=a∴|MP|=a|...