已知三角形ABC的外接圆半径为R,且满足2R(sin平方A-sin平方C)=(√2a-b)sinB.求三角形ABC面积的最大值
问题描述:
已知三角形ABC的外接圆半径为R,且满足2R(sin平方A-sin平方C)=(√2a-b)sinB.求三角形ABC面积的最大值
答
2R(sin²A-sin²C)=(√2a-b)sinB (2R)²sin²A-(2R)²sin²C=(√2a-b)*(2R)SinB a²-c²=(√2a-b)b=√2ab-b² a²+b²-c²=√2ab cosC=(a²+b²-c²)/...