求证:2(a-b)(a-c)+2(b-c)(b-a)+2(c-a)(c-b)=(b-c)的平方+(c-a)的平方+(a-b)的平方
问题描述:
求证:2(a-b)(a-c)+2(b-c)(b-a)+2(c-a)(c-b)=(b-c)的平方+(c-a)的平方+(a-b)的平方
答
2(a-b)(a-c)+2(b-c)(b-a)+2(c-a)(c-b)=2(a^2-ab-bc)+2(b^2-ac-bc)+2(c^2-ab-ac) =2a^2+2b^2+2c^2-2ab-2ac-2bc=(a-b)^2+(b-c)^2+(c-a)^2