若S=x2−xy+y2−2x+y+5/2,当x与y取遍所有实数时,则S_0.(填“大于”,“小于”)

问题描述:

若S=x2−xy+y2−2x+y+

5
2
,当x与y取遍所有实数时,则S______0.(填“大于”,“小于”)

S=x2−xy+y2−2x+y+52=12(2x2−2xy+2y2−4x+2y+5)=12(x2−2xy+2y2−4x+4+y2+2y+1)=12[(x−y)2+(x−2)2+(y+1)2]∵(x-y)2≥0,(x-2)2≥0,(y+1)2≥0当(x-y)2=(x-2)2=(y+1)2=0时不可能所以S>0...