已知a=(3sinA,cosA),b=(2sinA,5sinA-4cosA),A∈(3π2,2π),且a⊥b.求tanA和cos(A+π3)的值.

问题描述:

已知

a
=(3sinA,cosA),
b
=(2sinA,5sinA-4cosA),A∈(
2
,2π),且
a
b
.求tanA和cos(A+
π
3
)的值.

由题意可得

a
b
=6sin2A+5sinAcosA-4cos2A=0,
 即(3sinA+4cosA)(2sinA-cosA)=0,即:3sinA+4cosA=0  可得:tanA=-
4
3

或:2sinA-cosA=0,可得:tanA=
1
2

∵A∈(
2
,2π),∴tanA<0,∴只能tanA=-
4
3

∴sinA=-
4
5
,cosA=
3
5
,cos(A+
π
3
)=cosAcos
π
3
-sinAsin
π
3
=
3
5
×
1
2
-(-
4
5
)×
3
2
=
3+4
3
10