急求高一数学数列题,详细过程!

问题描述:

急求高一数学数列题,详细过程!
an/a(n-1)=2^n,且a1=1,求a100和an
已知数列{an}满足递推关系式an=2a(n-1)+1 (n>=2,n∈N*)(1)证明bn=an+1是等比数列(2)求数列{an}的递推 公式
求和S=1/1*3+1/3*5+1/5*7...+1/(2n-1)(2n+1)

an/a(n-1)=2^n,a2/a1=2^2a3/a2=2^3a4/a3=2^4……a100/a99=2^100 叠乘a100/a1=2^(2+3+4+……+100) a100=2^[5049]an/a1=2^(2+3+4+……+n)=2^((n+2)*(n-1)/2)an=2a(n-1)+1[an+1]=2[a(n-1)+1] bn=an+1 b(n-1)=a(n-1)+1bn...