1.已知a^2b^2+a^2+b^2+1=4ab,求ab的值.
问题描述:
1.已知a^2b^2+a^2+b^2+1=4ab,求ab的值.
2.(2+1)(2^2+1)(2^4+1).(2^32+1)+1的个位数字是____.
答
1.因为a^2b^2+a^2+b^2+1=4ab,所以(a^2b^2-2ab+1)+(a^2-2ab+b^2)=0,所以(ab-1)^2+(a-b)^2=0,所以ab=1,a=b,所以ab=1; 2.(2+1)(2^2+1)(2^4+1).(2^32+1)+1=(2-1)(2+1)(2^2+1)(2^4+1).(2^32+1)+1=(2^2-1)(2^2+1)(2^4+1).(...