已知函数y=ax2+bx+c(a≠0),给出下列四个判断:①a>0;②2a+b=0;③b2-4ac>0;④a+b+c<0.以其中三个判断作为条件,余下一个判断作为结论,可得到四个命题,其中,真命题的个数有( )
问题描述:
已知函数y=ax2+bx+c(a≠0),给出下列四个判断:①a>0;②2a+b=0;③b2-4ac>0;④a+b+c<0.以其中三个判断作为条件,余下一个判断作为结论,可得到四个命题,其中,真命题的个数有( )
A. 1个
B. 2个
C. 3个
D. 4个
答
(1)∵①a>0,∴开口向上,∵②2a+b=0,∴对称轴为x=1,∵③b2-4ac>0,∴顶点在第四象限,∴④a+b+c<0正确;(2)∵①a>0,∴开口向上,∵②2a+b=0,∴对称轴为x=1,∵④a+b+c<0,∴顶点在第四象限,∴③b2-4a...