已知A,B在抛物线y2=2px(p>0)上,O为坐标原点,如果|OA|=|OB|且△AOB的重心恰好是此抛物线的焦点F,则AB直线的方程是(  ) A.x-p=0 B.4x-3p=0 C.2x-5p=0 D.2x-5p=0

问题描述:

已知A,B在抛物线y2=2px(p>0)上,O为坐标原点,如果|OA|=|OB|且△AOB的重心恰好是此抛物线的焦点F,则AB直线的方程是(  )
A. x-p=0
B. 4x-3p=0
C. 2x-5p=0
D. 2x-5p=0

由A、B是抛物线y2=2px(p>0)的两点,|AO|=|BO|,
及抛物线的对称性知,A、B关于x轴对称.
设直线AB的方程是 x=m,则  A( m,

2pm
)、B(m,-
2pm
),设AB与x轴的交点为D,
∵△AOB的重心恰好是抛物线的焦点F(
p
2
,0 ),∴|OF|=
2
3
|OD|,即
p
2
=
2
3
m,求得 m=
3p
4

故直线AB的方程为x=
3p
4
,即4x-3p=0,
故选:B.