已知点P是抛物线x2=4y上的动点,点P在直线y+1=0上的射影是点M,点A的坐标(4,2),则|PA|+|PM|的最小值是(  ) A.17 B.13 C.3 D.2

问题描述:

已知点P是抛物线x2=4y上的动点,点P在直线y+1=0上的射影是点M,点A的坐标(4,2),则|PA|+|PM|的最小值是(  )
A.

17

B.
13

C. 3
D. 2

抛物线的焦点坐标F(0,1),准线方程为y=-1.根据抛物线的定义可知|PM|=|PF|,所以|PA|+|PM|=|PA|+|PF|≥|AF|,即当A,P,F三点共线时,所以最小值为

42+(2−1)2
17

故选A.