已知向量a,b,c满足|a|=2 a/|a|+b/|b|=(a+b)/|a+b|,(a-c)*(b-c)=0,则|c|的最大值是
问题描述:
已知向量a,b,c满足|a|=2 a/|a|+b/|b|=(a+b)/|a+b|,(a-c)*(b-c)=0,则|c|的最大值是
答
sqrt(3)-1≤|c|≤sqrt(3)+1a/|a|+b/|b|=(a+b)/|a+b|,a/|a|、b/|b|、(a+b)/|a+b|分别表示a、b、a+b的单位向量故a和b的夹角为2π/3,且:|a+b|=|a|=|b|=2,|a-b|=2sqrt(3)1 数形结合:以a-b为直径画一个圆,则c在该圆上,...