概率密度和分布函数X的取值范围为什么不一致?
问题描述:
概率密度和分布函数X的取值范围为什么不一致?
举个再简单不过的例子,如图所示:均匀分布.为什么概率密度不能取x=a,x=b.而分布函数F(x)左边取x=a,右边不取x=b?为什么就不可以两个函数x的取值范围都保持一致呢?
答
一般来说分布函数都是右连续 因为求某一点的概率如果不是连续的就是F(X)-F(X-0) 如果连续函数某一点处得概率就无所谓了 就相当于微积分那个意思.所以如果是连续函数 分布密度函数的取值 无所谓 分布函数也无所谓其实 但是分布函数最好还是写成右连续 因为所有都符合.没听明白。就知道你在说右连续。均匀分布是连续分布。1维均匀分布求概率其实就是求,线段长度和总线段长度的比,二维均匀分布其实就是求部分面积和总面积的比。那么一点处的长度或者面积就完全可以忽略因为它无限小几乎为0不影响结果,所以密度函数是开的还是闭的根本无所谓。建议你看看书好好。他密度取等于a等于b完全也是可以的我就是在看书啊 看不懂才过来咨询的啊