各位学霸大神们,求教一下这道题目,谢谢你们啦!

问题描述:

A<,B,C为三角形ABC的三个内角a.b=0求角A

  

  

  (1)∵向量a*向量b=sin(B+C)-cos(B+C)=0   ∴B+C=45°   ∴A=135°   (2)a·b=(sinB+cosB)(sinC)+(cosC)(sinB-cosB)   =sinBsinB+cosBsinC+cosCsinB-cosCcosB   =-cosCcosB+sinBsinB+cosBsinC+cosCsinB   =-cos(B+C)+sin(B+C)=-1/5   又[sin(B+C)]^2+[cos(B+c)]^2=1   解得sin(B+C)=3/5 cos(B+C)=4/5(这里利用sin(B+C)>0舍去了一组解,因为B,C为三角形的内角)   sinA=sin(180-A)=sin(B+C)=3/5   cosA=-cos(180-A)=-cos(B+C)=-4/5   tanA=sinA/cosA=-3/4   tan2A=2tanA/[1-(tanA)^2]=2*(-3/4)/(1-9/16)=-24/7   cos2A=2(cosA)^2-1=2(-4/5)^2-1=7/25