1.3333×3333+9999×8889
问题描述:
1.3333×3333+9999×8889
2.20012001÷19971997
3.125×25×3232×69
4.9.75+99.75+999.75+9999.75
5.(999²+999)×0.01
答
(1)3*1111*3*1111+1111*9(9999-1111+1)
=9*1111*1111+1111*9(9999-1111+1)
=9*1111(1111+9999-1111+1)=9999*10000=99990000
(2)(2011*10000+2001)/(1991*10000+1997)
=2001(1000+1)/1997(10000+1)=2001/1997