解方程组N/(v+u)=N1/v ,N/(v-u)=N2/v 求出N

问题描述:

解方程组N/(v+u)=N1/v ,N/(v-u)=N2/v 求出N
求出N
答案是N=2N1N2/(N1+N2)

由1式:N=N1(1+u/v),即u/v=N/N1-1
由2式:N=N2(1-u/v),即u/v=1-N/N2
两式相减,消去u/v:
N/N1-1-1+N/N2=0
N(1/N1+1/N2)=2
N=2N1N2/(N1+N2)