1x2÷1+2x3÷1+3x4÷1+4x5÷1+5x6÷1.+n(n+1)÷1

问题描述:

1x2÷1+2x3÷1+3x4÷1+4x5÷1+5x6÷1.+n(n+1)÷1

原式=1*2+2*3+3*4+...+n(n+1)=1²+1+2²+2+3²+3+...+n²+n=(1²+2²+3²+...+n²)+(1+2+3+...+n)∵1²+2²+3²+...+n²=【n(n+1)(2n+1)】/6①(平方和...