求1/(19*21)+1/(21*23)+1/(23*25)+1/(25*27)+.+1/(97*99)的值

问题描述:

求1/(19*21)+1/(21*23)+1/(23*25)+1/(25*27)+.+1/(97*99)的值
1/(3*5)=(1/2)*(1/3-1/5) 1/(5*7)=(1/2)*(1/5-1/7).

1/(19*21)+1/(21*23)+1/(23*25)+1/(25*27)+.+1/(97*99)
=1/2[1/19-1/21+1/21-1/23+1/23-1/25+.+1/97-1/99]
=1/2[1/19-1/99]
=1/2(99-19)/99*19
=1/2*80/1881
=40/1881