解方程:x2+4xx−1+ 72x−72x2+4x−18=0

问题描述:

解方程:

x2+4x
x−1
72x−72
x2+4x
−18=0

设y=x2+4xx−1,则原方程可化为y+72y−18=0y2-18y+72=0,所以y1=6或y2=12.当y=6时,x2+4xx−1=6, x2+4x=6x−6,故x2-2x+6=0.此方程无实数根.当y=12时,x2+4xx−1=12, x2+4x=12x−12,故x2-8x+12...