怎样证明无限循环群和任意循环群同态?
问题描述:
怎样证明无限循环群和任意循环群同态?
答
设G=<x是无限循环群,x是其生成元;H=<a是一个n阶循环群,a是其生成元.定义映射σ:G -H,x-a.直接验证可知σ是G到H的一个群同态.进一步地,容易证明σ是一个满同态(即σ的像=H),其同态核=<x^n,即由x^n生成的子群.
怎样证明无限循环群和任意循环群同态?
设G=<x是无限循环群,x是其生成元;H=<a是一个n阶循环群,a是其生成元.定义映射σ:G -H,x-a.直接验证可知σ是G到H的一个群同态.进一步地,容易证明σ是一个满同态(即σ的像=H),其同态核=<x^n,即由x^n生成的子群.