任意三角形射影定理(万分感谢)
问题描述:
任意三角形射影定理(万分感谢)
任意三角形射影定理又称“第一余弦定理”: △ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有 a=b·cosC+c·cosB, b=c·cosA+a·cosC, c=a·cosB+b·cosA. 注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理. 证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且 BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB.同理可证其余.
证明2:由正弦定理,可得:b=asinB/sinA,c=asinC/sinA=asin(A+B)/sinA=a(sinAcosB+cosAsinB)/sinA =acosB+(asinB/sinA)cosA=a·cosB+b·cosA.同理可证其它的.
请问cosA、 cosB 、cosC是什么?
我还是初三学生
答
分别是角A.B.C的余弦植