如图,AB∥CD,在AB与CD之间任意找一点E,连接AE,CE(说明:AB,CD都为线段),自己画出图形并探索下面问题: (1)试问∠AEC与∠C有何种关系?请猜想并给出证明. (2)当E点在平行线AB,
问题描述:
如图,AB∥CD,在AB与CD之间任意找一点E,连接AE,CE(说明:AB,CD都为线段),自己画出图形并探索下面问题:
(1)试问∠AEC与∠C有何种关系?请猜想并给出证明.
(2)当E点在平行线AB,CD的外部时,上一问的结论是否仍然成立?画图探索并予以证明.
答
如图所示,
(1)∠AEC=∠A+∠C.
证明:过点E作EF∥AB,
∴∠1=∠A;
又已知AB∥CD,
∴EF∥CD(平行公理),
∴∠2=∠C;
又∵∠AEC=∠1+∠2,
∴∠AEC=∠A+∠C.
(2)不成立,结论应是∠A=∠AEC+∠C或∠C=∠AEC+∠A.
证明:如果E在CD下方,过E作EM∥AB∥CD,
那么可得出∠A=∠AEM,∠C=∠MEC,
∵∠AEM=∠AEC+∠MEC,
∴∠A=∠AEC+∠C,
如果E在AB上方,证法同上,可得出的结论是∠C=∠AEC+∠A.
当点E在点A和点C左侧时∠A+∠AEC+∠C=360°.