n,m∈R+证明 a²/m²+b²/n²>=(a+b)²/m+n
问题描述:
n,m∈R+证明 a²/m²+b²/n²>=(a+b)²/m+n
答
利用柯西不等式
(a^2+b^2)(c^2+ d^2)≥(ac+bd)^2
所以(m+n)(a^2/m+b^2/n)≥(a+b)^2
即(a^2/m+b^2/n)≥(a+b)^2/(m+n)
方法二:
由(n/m)a²+(m/n)b²≥2ab,得到(1+n/m)a²+(1+m/n)b²≥a²+2ab+b²,再移项化简得:[(m+n)/m]a²+[(m+n)/n]b²≥(a+b)²,两边除以m+n就得到了