已知A是n矩阵,A^2=A,且秩(A)=r,证明A可以相似对角化,并求A的相似对角形以及行列式|A+E|的值.
问题描述:
已知A是n矩阵,A^2=A,且秩(A)=r,证明A可以相似对角化,并求A的相似对角形以及行列式|A+E|的值.
答
因为 A^2=A
所以 A 的特征值只能是 0 和 1.
且由 A(E-A)=0 得 r(A)+r(E-A)