1x2x3+2x3x4+...+nxx=?
问题描述:
1x2x3+2x3x4+...+nx
答
1x2x3+2x3x4+...+nxx
=1/4×[1×2×3×(4-0)+2×3×4×(5-1)+.+(n-1)×n×(n+1)×((n+2)-(n-2))
+n×(n+1)×(n+2)×((n+3)-(n-1))]
=1/4×[1×2×3×4-1×2×3×0+2×3×4×5-1×2×3×4+.+(n-1)×n×(n+1)×(n+2)-(n-1)×n×(n+1)×(n-2)+n×(n+1)×(n+2)×(n+3)-n×(n+1)×(n+2)×(n-1) ]
(内部全部抵消!)
=1/4×n×(n+1)×(n+2)×(n+3)