欧拉公式cosx+isinx=e^ix是怎么推算出sinx=(e^ix-e^ix)/2i的及cosx=(e^ix+e^ix)/2的?

问题描述:

欧拉公式cosx+isinx=e^ix是怎么推算出sinx=(e^ix-e^ix)/2i的及cosx=(e^ix+e^ix)/2的?

e^ix=cosx+isinx,e是自然对数的底,i是虚数单位.
将公式里的x换成-x,得到:
e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.