求满足方程(tanx)^4+(tany)^4+2(cotx)^2(coty)^2=3+sin^2 (x+y)的所有实数对(x,y)
问题描述:
求满足方程(tanx)^4+(tany)^4+2(cotx)^2(coty)^2=3+sin^2 (x+y)的所有实数对(x,y)
答
(tanx)^4+(tany)^4>=2(tanx)^2(tany)^2
2(tanx)^2(tany)^2+2/[(tanx)^2(tany)^2]>=4
3+[sin(x+y)]^2