数列四n平方减一分之一的前n项和为Sn,则limSn等于…(n趣向于无穷大)

问题描述:

数列四n平方减一分之一的前n项和为Sn,则limSn等于…(n趣向于无穷大)

1/(4n^2 -1) = 1/(2n-1)(2n+1) = 1/2 * (1/(2n-1) - 1/(2n+1))
Sn = 1/2 * (1/1 - 1/3 + 1/3 - 1/5 + .+ 1/(2n-1) - 1/(2n+1))
= 1/2 * (1 - 1/(2n+1))
n趋于无穷大时上式值为1/2