数列{an}若a1=1,a2=1+2,a3=1+2+3,a4=1+2+3+4…… S2012=a1+a2+a3……a2012,S2012=?
问题描述:
数列{an}若a1=1,a2=1+2,a3=1+2+3,a4=1+2+3+4…… S2012=a1+a2+a3……a2012,S2012=?
答
an=1+2+...+n=n(n+1)/2=1/2*(n^2+n)
∴Sn=a1+a2+...+an
=1/2*(1^2+1)+1/2*(2^2+2)+...+1/2*(n^2+n)
=1/2*[(1^2+2^2+...+n^2)+(1+2+...+n)]
=1/2*[n*(n+1)(2n+1)+n(n+1)/2]
=1/2*n(n+1)*(2n+1)+1/2)
=1/2*n(n+1)(2n+3/2)
∴S2012=.
麻烦自己算一下嘛,过程就是上面的啦!