方程组2x+y=1-m,x+2y=2中,如果未知数x,y是满足x大于2y,那么m的取值范围是?
问题描述:
方程组2x+y=1-m,x+2y=2中,如果未知数x,y是满足x大于2y,那么m的取值范围是?
答
2x+y=1-m ①
x+2y=2 ②
①*2-②得
3x=2-2m-2
x=-2m/3
代入②得
-2m/3+2y=2
2y=2+2m/3
∵x>2y
∴-2m/3>2+2m/3
-4m/3>2
m
答
x+2y=2 x=2-2y>2y
4Ym=1-2x-y=1-4+4y-y=3y-3
答
2x+y=1-m,(1)
x+2y=2(2)
(2)-(1)×2得:
x-4x=2-2+2m;
-3x=2m;
x=-2m/3;
带入(1)得:
-4m/3+y=1-m;
y=m/3+1;
∵x>2y;
∴-2m/3>2(m/3+1);
-4m/3>2;
∴m<-3/2;
答
2x+y=1-m ①
x+2y=2 ②
①+②得
3x+3y=3-m
x+y=(3-m)/3
(1)-(2):
x-y=-1-m
故有x=(1-m/3-1-m)/2=-2m/3
y=-2m/3+m+1=m/3+1
x>2y
-2m/3>2m/3+2
4m/3m,