请问积分表中的 ∫dx/(ax^2+b)^2是如何降次,推导成为含有∫dx/(ax^2+b)形式的?

问题描述:

请问积分表中的 ∫dx/(ax^2+b)^2是如何降次,推导成为含有∫dx/(ax^2+b)形式的?
因a和b的符号不确定 用tan直接换元似不妥

∫dx/(ax^2+b)^2
分部积分
=∫1/(2ax)*d/(ax^2+b)
=1/[(2ax)*(ax^2+b)]+∫1/[(2ax^2)*(ax^2+b)]dx
后这同阶,分解因式
∫1/[(2ax^2)*(ax^2+b)]dx
=∫[1/(bx^2)-a/(b(ax^2+b))]dx
.
OK