A和B是同阶非奇异矩阵,证明下列式子等价:AB=BA,A(B^-1)=(B^-1)A,(A^-1)B=B(A^-1),(A^-1)(B^-1)=(B^-1)(A^-1)
问题描述:
A和B是同阶非奇异矩阵,证明下列式子等价:
AB=BA,A(B^-1)=(B^-1)A,(A^-1)B=B(A^-1),(A^-1)(B^-1)=(B^-1)(A^-1)
答
AB BA等价:(A^-1)ABA=BA所以等价
后面的同理,不证明了
答
由于A和B是同阶非奇异矩阵,即A和B均可逆
(1)->(2):AB=BA等号两边左乘(B^-1),右乘(B^-1)
(2)->(3):等号两边左乘(A^-1)B,右乘B(A^-1)
(3)->(4):等号两边左乘(B^-1),右乘(B^-1)
(4)->(1):等号两边左乘BA,右乘AB
从而证明4式等价