【高二数学】解不等式log2 (x+1)+log1/4 (x-1)>log4(2x-1)

问题描述:

【高二数学】解不等式log2 (x+1)+log1/4 (x-1)>log4(2x-1)
解不等式log2 (x+1)+log1/4 (x-1)>log4(2x-1)
说明:log2 (x+1)中底数为2,真数为x+1
log1/4 (x-1)中底数为1/4,真数为x-1
log4(2x-1)中底数为4,真数为2x-1
答案是{x|1
还有一题变式:
解不等式log2(x+1)+log1/2(x-1)>2
答案是{x|1

log2(x+1)+log1/4(x-1)〉log4(2x-1)
log4(x+1)^2-log4(x-1)〉log4(2x-1)
(x+1)^2/(x-1)>2x-1
x+1>0
x-1>0
2x-1>0