在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:BE=BF;(2)若∠CAE=30°,求∠ACF度数.
问题描述:
在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:BE=BF;
(2)若∠CAE=30°,求∠ACF度数.
答
(1)证明:如图,∵∠ABC=90°,∴在Rt△ABE和Rt△CBF中
,
AB=CB CF=AE
∴Rt△ABE≌Rt△CBF(HL),
∴BE=BF;
(2)∵AB=CB,∠ABC=90°,
∴∠BAC=∠BCA=45°,
∵∠CAE=30°,
∴∠BAE=45°-30°=15°,
∵Rt△ABE≌Rt△CBF,
∴∠BCF=∠BAE=15°,
∴∠ACF=∠BCF+∠BCA=15°+45°=60°.
答案解析:(1)可根据“HL”判断Rt△ABE≌Rt△CBF,则可得到BE=BF;
(2)由AB=CB,∠ABC=90°,可判断△ABC为等腰直角三角形,则∠BAC=∠BCA=45°,可得到∠BAE=15°,再根据Rt△ABE≌Rt△CBF得到∠BCF=∠BAE=15°,然后根据∠ACF=∠BCF+∠BCA进行计算.
考试点:全等三角形的判定与性质;等腰直角三角形.
知识点:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质.