请证明爱尔可斯定理:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形.
问题描述:
请证明爱尔可斯定理:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形.
答
证明:连接AE、CE、CD,M是AE的中点,N是CE的中点,H是CD的中点,连接QM、QN、PM、CN、PH、GH,
∵△PQG由线段AD、BE、CF的中点构成的三角形,M是AE的中点,N是CE的中点,H是CD的中点,
∴QM=
AB,QN=1 2
BC,PH=1 2
AC,NG=1 2
EF,PM=1 2
DE,HG=1 2
DF,∠NQE=∠CBE,∠AMP=∠AED,∠ABE=∠MQE,1 2
∵AB=BC=AC,EF=DE=DF,
∴QM=QN=PH,PM=NG=HG,
∵∠PMQ=∠AMQ+∠AMP=∠MQE+∠QEM+∠AED=∠MQN+∠NQE+∠QED=∠ABE+∠QED=∠ABC+∠CBE+∠QED=60°+∠EBC+∠QED,∠QNG=∠QNC+∠CNG=∠NQE+∠QEN+∠NED+∠DEF=∠NQE+∠QED+60°,
∴∠PMQ=∠GNQ,
在△PQM和△GQN中,
,
QM=QN PM=NG ∠PMQ=∠GNQ
∴△PQM≌△GQN(SAS),
∴PQ=QG,
同理可证:PG=PQ=QG,
∴△PQG是正三角形.