求导 对数求导法对某一函数用对数求导法进行,由于对数的底数是大于零的,那么一定要求此函数的值域也要大于零吗?我看小于零是也没问题啊,反正最后对数符号都会被消去.
问题描述:
求导 对数求导法
对某一函数用对数求导法进行,由于对数的底数是大于零的,那么一定要求此函数的值域也要大于零吗?我看小于零是也没问题啊,反正最后对数符号都会被消去.
答
求导的方法
(1)求函数y=f(x)在x0处导数的步骤:
① 求函数的增量Δy=f(x0+Δx)-f(x0)
② 求平均变化率
③ 取极限,得导数。
(2)几种常见函数的导数公式:
① C'=0(C为常数);
② (x^n)'=nx^(n-1) (n∈Q);
③ (sinx)'=cosx;
④ (cosx)'=-sinx;
⑤ (e^x)'=e^x;
⑥ (a^x)'=a^xIna (ln为自然对数)
7 loga(x)'=(1/x)loga(e)
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
④[u(v)]'=[u'(v)]*v' (u(v)为复合函数f[g(x)])
(4)复合函数的导数
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的一个重要的支柱!
答
一定要求此函数的值域大于零,因为这是对对数的要求,必须满足的