已知f(x)对任意x.y属于R,只有f(x)+f(y)=f(x+y),且当x大于0时,f(x)小于0 比较f(-2)与f(8分之1)大.
问题描述:
已知f(x)对任意x.y属于R,只有f(x)+f(y)=f(x+y),且当x大于0时,f(x)小于0 比较f(-2)与f(8分之1)大.
.已知f(x)对任意x.y属于R,只有f(x)+f(y)=f(x+y),且当x大于0时,f(x)小于0 比较f(-2)与f(8分之1)大.
答
答:
对任意实数x和y有:
f(x)+f(y)=f(x+y)
x>0时,f(x)0时,f(x)f(1/8)