如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是( ) A.70° B.110° C.140° D.150°
问题描述:
如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是( )
A. 70°
B. 110°
C. 140°
D. 150°
答
根据四边形的内角和定理可得:
∠DAB+∠DCB=220°,
∵OA=OB=OC,∠ABC=∠ADC=70°,
∴∠OAB=∠OBA,∠OCB=∠OBC,
∴∠OAB+∠OCB=70°,
∴∠DAO+∠DCO=220°-70°=150度.
故选D.