已知△ABC是半径为R的圆的内接三角形,且2R [(sinA)^2-(sinC)^2]=[(根号2 ×a )-b]sinB
问题描述:
已知△ABC是半径为R的圆的内接三角形,且2R [(sinA)^2-(sinC)^2]=[(根号2 ×a )-b]sinB
1.求角C
2.求△ABC面积S的最大值.
我主要是问第二问.随便说写,第一问的答案是п/4
答
根据正弦定理 由2R[(sinA)²-(sinC)²]=(√2*a- b)*sinB 得到 a²-c²=√2ab-b² 根据余弦定理 cosC=(a²+b²-c²)/2ab=√2/2 故 角C=45度 所以 S=(1/2)absinC=2R²sinAsinBsin...