设a是实数.若函数f(x)=|x+a|-|x-1|是定义在R上的奇函数,但不是偶函数,则函数f(x)的递增区间为_.

问题描述:

设a是实数.若函数f(x)=|x+a|-|x-1|是定义在R上的奇函数,但不是偶函数,则函数f(x)的递增区间为______.

由题意得f(-x)=-f(x),即:|-x+a|-|-x-1|=-|x+a|+|x-1|
∴a=1或-1.
a=-1,f(x)=0是偶函数不对,
a=1时,分情况讨论可得,f(x)=

−2,x<−1
2x,−1<x<1
2,x>1
,所以函数f(x)的递增区间为〔-1,1〕
故答案为〔-1,1〕