已知函数f(x)=ax^3+bx^2+cx+d,有三个零点分别是0,1,2 f(x)在(-∞,x1]单增 [x1,x2]单减 [x2,+∞)单增 求x1^2+x2^2 __________
问题描述:
已知函数f(x)=ax^3+bx^2+cx+d,有三个零点分别是0,1,2 f(x)在(-∞,x1]单增 [x1,x2]单减 [x2,+∞)单增 求x1^2+x2^2 __________
错了.不是f(x)=ax^3+bx^2+cx+d 是f(x)=x^3+bx^2+cx+d
答
由题意,f(x)有三个解,可必可以分解因式,即
f(x)=x(x-1)(x-2)=x^3-3x^2+2x
f'(x)=3x^2-6x+2
令f'(x)=0,即3x^2-6x+2=0
设两根为x1,x2,由韦达定理,得
x1^2+x2^2=(x1+x2)^2-2x1x2
=(6/3)^2-2*2/3
=8/3